Package: fastAdaboost 1.0.0

Sourav Chatterjee

fastAdaboost: a Fast Implementation of Adaboost

Implements Adaboost based on C++ backend code. This is blazingly fast and especially useful for large, in memory data sets. The package uses decision trees as weak classifiers. Once the classifiers have been trained, they can be used to predict new data. Currently, we support only binary classification tasks. The package implements the Adaboost.M1 algorithm and the real Adaboost(SAMME.R) algorithm.

Authors:Sourav Chatterjee [aut, cre]

fastAdaboost_1.0.0.tar.gz
fastAdaboost_1.0.0.zip(r-4.5)fastAdaboost_1.0.0.zip(r-4.4)fastAdaboost_1.0.0.zip(r-4.3)
fastAdaboost_1.0.0.tgz(r-4.4-x86_64)fastAdaboost_1.0.0.tgz(r-4.4-arm64)fastAdaboost_1.0.0.tgz(r-4.3-x86_64)fastAdaboost_1.0.0.tgz(r-4.3-arm64)
fastAdaboost_1.0.0.tar.gz(r-4.5-noble)fastAdaboost_1.0.0.tar.gz(r-4.4-noble)
fastAdaboost_1.0.0.tgz(r-4.4-emscripten)fastAdaboost_1.0.0.tgz(r-4.3-emscripten)
fastAdaboost.pdf |fastAdaboost.html
fastAdaboost/json (API)

# Install 'fastAdaboost' in R:
install.packages('fastAdaboost', repos = c('https://rickhelmus.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/souravc83/fastadaboost/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

3.85 score 11 stars 128 scripts 31 downloads 1 mentions 3 exports 2 dependencies

Last updated 9 years agofrom:f331ff8ccf. Checks:OK: 9. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64OKNov 06 2024
R-4.5-linux-x86_64OKNov 06 2024
R-4.4-win-x86_64OKNov 06 2024
R-4.4-mac-x86_64OKNov 06 2024
R-4.4-mac-aarch64OKNov 06 2024
R-4.3-win-x86_64OKNov 06 2024
R-4.3-mac-x86_64OKNov 06 2024
R-4.3-mac-aarch64OKNov 06 2024

Exports:adaboostget_treereal_adaboost

Dependencies:Rcpprpart