# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "fastAdaboost" in publications use:' type: software license: MIT title: 'fastAdaboost: a Fast Implementation of Adaboost' version: 1.0.0 doi: 10.32614/CRAN.package.fastAdaboost abstract: Implements Adaboost based on C++ backend code. This is blazingly fast and especially useful for large, in memory data sets. The package uses decision trees as weak classifiers. Once the classifiers have been trained, they can be used to predict new data. Currently, we support only binary classification tasks. The package implements the Adaboost.M1 algorithm and the real Adaboost(SAMME.R) algorithm. authors: - family-names: Chatterjee given-names: Sourav email: souravc83@gmail.com repository: https://rickhelmus.r-universe.dev repository-code: https://github.com/souravc83/fastAdaboost commit: f331ff8ccfe2e7f318448a29bc72af646dfaf2c1 url: https://github.com/souravc83/fastAdaboost date-released: '2016-02-23' contact: - family-names: Chatterjee given-names: Sourav email: souravc83@gmail.com