# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "MS2Quant" in publications use:' type: software title: 'MS2Quant: Ionization efficiency prediction and quantification of unidentified chemicals' version: 1.1.0 doi: 10.32614/CRAN.package.MS2Quant abstract: MS2Quant harvests pre-trained xgbTree algorithm-based ionization efficiency prediction model. Using strucutral information (SMILES) or predicted fingerprints calculated with SIRIUS+CSI_FingerID software, ionization efficiency can be predicted. If calibrants have been measured together with suspects subject to quantification, predicted ionization efficiencies can be converted into measurement-specific response factors and concentration of unknown chemcals can be estimated. authors: - family-names: Sepman given-names: Helen email: helen.sepman@aces.su.se orcid: https://orcid.org/0000-0002-8222-9962 repository: https://rickhelmus.r-universe.dev commit: 46e0c77ef4961a29a73a388105eeb28e33839630 contact: - family-names: Sepman given-names: Helen email: helen.sepman@aces.su.se orcid: https://orcid.org/0000-0002-8222-9962